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Abstract. We present, for general relativistic case, a theoretical study of resonance of exchange amplitude
when a photon is scattered by an electron in the field of a circularly polarized wave. Resonances are related
to a virtual intermediate particle that falls within the mass shell. We find conditions when resonances occur
in exchange amplitude. We derive the expressions for the resonant amplitudes and the differential cross-
sections when the invariant intensity parameter of the laser field is small (η � 1) and the interference of
direct and exchange amplitudes is absent. It is demonstrated that the resonant cross-section of scattering
may be several orders of magnitude higher than the cross-section of Compton effect in the absence of the
external field.

PACS. 34.50.Rk Laser-modified scattering and reactions – 12.20.-m Quantum electrodynamics

1 Introduction

The theoretical study of the quantum processes of the first
order in the fine structure constant in the presence of the
field of a plane electromagnetic wave dates back to the
1960s and is connected with the creation of lasers. With
production of ultrahigh-power femtosecond lasers experi-
mental testing of this study becomes possible. The results
of series of experiments at SLAC are found to be in agree-
ment with the theoretical predictions [1,2]. Theoretical
and experimental investigations of the first order process
in the laser field go on to the present day (see, for example
[3–5]).

The analysis of quantum-electrodynamics processes of
the second order in the fine structure constant in the laser
field is complicated by computational difficulties and a
cumbersome form of results. Completely analytical calcu-
lations are possible only in the particular cases (see, for ex-
ample [6]). Characteristic feature of these processes is the
appearance of the resonances which are related to a virtual
intermediate particle that falls within the mass shell (see
the monographs [7], the review [8] and the articles [9–22]).
Oleinic and Belousov first point out existing resonances in
Compton process in the external electromagnetic wave [9–
11] but their studies have mainly a qualitative character.
In our work [12] we find cross-section for the resonant scat-
tering of a photon by an electron through direct diagram
(see Fig. 1a) in the framework of resonant approximation.

The purposes of the present work are clarification of
a condition of resonance of exchange amplitude and cal-
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Fig. 1. Compton-effect in the field of a plane electromagnetic
wave. The double lines correspond to the wave functions of an
electron in the field of the wave (the Volkov functions), and
the dashed lines represent a photon. (a) Direct diagram and
(b) exchange diagram.

culation of a resonant cross-section for scattering through
exchange diagram (see Fig. 1b).

The relativistic system of units, where � = c = 1, and
standard metric (ab) = a0b0 −ab will be used throughout
this paper.

2 Amplitude of scattering photon by electron
in the laser field

Let us use the circularly polarized plane electromagnetic
wave with the four-potential A(ϕ) as a model of the laser
field:

A(ϕ) = a(ex cosϕ+ δey sinϕ), (1)
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where a = F/ω; F and ω are the amplitude of the electric
field strength and the frequency of the wave; δ = ±1; ϕ =
(kx) = ωt− kx is the phase; k = (ω,k) and ex = (0, ex),
ey =

(
0, ey

)
are the four-momentum and the polarization

four-vectors of the wave meeting the standard condition:
(exey) = 0, (exk) = (eyk) = 0, e2x = e2y = −1.

The amplitude of the scattering photon by an electron
through exchange diagram is given by the expression (see
Fig. 1b):

S = −ie2
∫

dxdx′Ψp′(x)γµG(x, x′)γνΨp(x′)

×A∗
ν(κ′x′)Aµ(κx), (2)

where p = (ε,p), κ = (κ0,κ) are four-momentums for an
initial electron and photon; p′ = (ε′,p′) and κ′ = (κ′0,κ′)
are four-momentums for a final electron and photon; γµ

(µ = 0, 1, 2, 3) is Dirac matrix; Aµ(κx) =
√

2π/ κ0 eµ×
exp(−i(κx)) is the wave function of the photon; eµ is the
polarization four-vector of the photon; Ψp(x) and G(x, x′)
are the wave function and the Green-function (propaga-
tion function) electron in the field (1) [23–25]:

Ψp(x) = Bp(x)eiSp(x) up√
2ε̃
, Bp(x) = 1+

e

(kp)
k̂Â. (3)

G(x, x′) =
1

(2π)4

∫
d4qBq(x)

q̂ +m

q2 −m2
B̄q(x′)

× exp (iSq(x) − iSq(x′)) , (4)

where e and m are the charge and the mass of an electron;
quantities with caps represent scalar products of a four-
vector by Dirac matrixes; up is Dirac bispinor; Sp(x) is
the classical action of an electron in the field (1):

Sp(x) = −(px) − e

(kp)

(kx)∫

0

[
(pA(ϕ)) − e

2
A2(ϕ)

]
dϕ. (5)

We restrict our consideration to the case when the in-
tensity of the external wave meets the condition

η =
e
√−A2

m
=

eF

mω
� 1. (6)

In this case the amplitude (2) can be written as:

S = De′∗νeµ
∞∑

l=−∞
ūp′T (l)

vµupδ
(4)(p̃+ κ+ lk− p̃′ − κ′), (7)

where D = −ie2
(
4(2π)3

√
κ0εκ′0ε′

)−1

is a normalization
constant; four-momentum with the tilde represents four-
quasimomentum [24,25]:

p̃ = p+
m2η2

2(kp)
k. (8)

In the expression (7) we introduce the notations:

T
(l)

νµ =
∞∑

l′=−∞
η|l

′|η|l
′−l|

×M (l′)
µ (p′, f)

f̂ +m

f2 −m2
M (l−l′)

ν (f, p), (9)

where
f̃ = p̃− κ′ + l′k = p̃′ − κ+ (l′ − l)k (10)

is the four-quasimomentum of the intermediate electron;
M

(l′)
µ is the invariant amplitude which is proportional to

the zeroth power of the parameter η. Taking into account
the condition (6) and using the resonant approximation
we need items only with the values l′ = ±1:

M (±1)
µ (p1, p2) = ∓1

2
y(p1, p2)e±iχγµ +

m

2(kp2)

(
kµê(∓)

−e(∓)µk̂
)

+
m

4

(
1

(kp1)
− 1

(kp2)

)
ê(±)k̂γµ. (11)

Here e(±) = ex ± iδey are the polarization vectors of pho-
tons of the electromagnetic wave; y(p′, q) and χ ≡ χ(p′, q)
are the kinematic parameters, which are written as

y(p1, p2) =
√
−g2(p1, p2), tanχ =

δ(gey)
(gex)

, (12)

where we use the notation: g ≡ g(p1, p2) = p2/(kp2) −
p1/(kp1).

The amplitude (7) is proportional to η|l
′|η|l

′−l| there-
fore we may restrict our consideration by the processes
with small significance of the integer numbers l and l′.
Each power of the parameter η meets the process of inter-
action with one photon of the wave. Note that the term
which is proportional to the zeroth power of the parameter
η (l = l′ = 0) in the expression (7) determines amplitude
of the Compton-effect in the absent external field. Hence
we can make a conclusion that a correction term to the
cross-section of Compton-effect in the low intense electro-
magnetic wave is proportional to the second order param-
eter η and therefore is small. Still the situation changes
when a virtual intermediate electron falls within the mass
shell:

f2 = m2. (13)

In the first approximation this condition may be satisfied
for l = 0, l′ = 1 through electronic and for l = 0, l′ =
−1 through positronic intermediate states. Corresponding
four-momentums we denote as (in the first approximation
we take p̃ = p, p̃′ = p′)

f− = p− κ′ + k = p′ − κ+ k, (14)

f+ = κ′ + k − p = κ+ k − p′, (15)

where minus and plus conform to the electronic and po-
sitronic intermediate states accordingly.
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Fig. 2. The geometry for the study of Compton-effect in the
field of a plane electromagnetic wave.

We have common four-momentum conservation law for
both cases:

p+ κ = p′ + κ′. (16)

As it follows from the equation (16) the frequency of the
final photon is connected with the frequency of the initial
photon by relationship

κ′0 =
κ0(1 − v cos θ̃)

1 − v cos θ̃′ + (κ0/ε)(1 − cos ϑ̃′)
, (17)

where v = p/ε is the velocity of the initial electron; θ̃ =
∠(p,κ), θ̃′ = ∠(p,κ′), ϑ̃′ = ∠(κ,κ′) and cos θ̃, cos θ̃′,
cos ϑ̃′ are given by

cos θ̃ = cos θ cosϑ+ sin θ sinϑ cos(ϕ− ψ), (18)

cos θ̃′ = cos θ cosϑ′ + sin θ sinϑ′ cos(ϕ− ψ′), (19)

cos ϑ̃′ = cosϑ cosϑ′ + sinϑ sinϑ′ cos(ψ − ψ′). (20)

Here

θ = ∠(k,p), ϑ = ∠(k,κ), ϑ′ = ∠(k,κ′), (21)

ϕ = ∠(e1,p‖), ψ = ∠(e1,κ‖), ψ′ = ∠(e1,κ
′
‖) (22)

are the polar (21) and azimuthal (22) angles of the initial
electron, the initial and final photons correspondingly; p‖,
κ‖, κ′

‖ are components of the vectors p, κ, κ′ which are
parallel to the polarization plane (see Fig. 2).

Depending on the scattered angle of the final photon
with respect to the direction of the momentum of the ini-
tial photon and electron, the frequency of the scattered
photon falls within the interval

κ0(1 − v cos θ)
1 + (κ0/ε) + |j1|

≤ κ′0 ≤ κ0(1 − v cos θ)
1 + (κ0/ε) − |j1|

, (23)

where j1 = v + (κ0/ε)nκ.
Rigorously, the divergence of the amplitude of scatter-

ing in the resonance range indicates that expansion into a
perturbation series is inapplicable in the situation under
study. Correct calculation of the amplitude of scattering
requires an approach that would fall beyond the frame-
work of the perturbation theory. Specifically, we can per-
form summation of a principal sequence of Feynman
diagrams. In practice, such summation is reduced to a con-
sideration of radiative corrections to the masses of parti-
cles involved in the process under investigation. This pro-
cedure leads to a finite width of a resonance [7–22].

We use a resonant approaching to obtain a resonant
amplitude and cross-section. In accordance with it every-
where with the exception of the denominator f2

∓ = m2

and in the dominator the mass of an electron in the wave
field becomes complex:

m→ m∗ = m− iΓ/2, (24)

where the width Γ is determined by the total probability
of decay of intermediate state, i.e., the probability of single
emission [24,25]:

Γ =
(f∓)0
m

W1 =
e2m

4
η2F

(
u

(∓)
1

)
, (25)

where minus and plus correspond to a resonance through
electronic and positronic intermediate states and we in-
troduce the notation

F
(
u

(∓)
1

)
=

⎛

⎜
⎝1 − 4

u
(∓)
1

− 8
(
u

(∓)
1

)2

⎞

⎟
⎠ ln

(
1 + u

(∓)
1

)

+
1
2

+
8

u
(∓)
1

− 1

2
(
1 + u

(∓)
1

)2 , (26)

where u(∓)
1 are invariant parameters:

u
(∓)
1 =

2(pκ′)
m2

=
u1

ũ′ ± 1
, ũ′ =

(kκ′)
(pκ′)

. (27)

Behavior of the width Γ (25) on the parameters u(∓)
1 is

shown in Figure 3.
We note that in the vicinity of resonance the cross-

section obtained on the basis of resonance approaching is
defined by a formula of the Breit-Wigner type [7–22].

Thus under resonant conditions f2∓ = m2 the ampli-
tude is written in the following form :

S(∓)
res =

D

f2∓ −m2
e′∗νeµδ(4)(p+ κ− p′ − κ′)

× ūp′
[
M (±1)

µ (p′, f∓)(f̂∓ +m)M (∓1)
ν (f∓, p)

]
up. (28)

3 Kinematics of resonance

3.1 Electronic intermediate state

In the case of the resonance through electronic intermedi-
ate state we can rewrite a process as a consequence of two
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Fig. 3. Dependence the width resonance Γ on invariant pa-

rameter u
(∓)
1 for η = 0.05.

Fig. 4. Resonance in the exchange diagram through electronic
intermediate state.

subprocesses (see Fig. 4): an emission of the final pho-
ton by the initial electron in the field of the wave and
an absorption of the incident photon by an intermediate
electron in the field of the wave. The conservation laws of
four-momentum which correspond to these subprocesses
have the following forms:

p+ k = f− + κ′, (29)

f− + κ = p′ + k. (30)

Taking into account equation (14) the resonance condi-
tions f2

− = m2 can be rewritten in the laboratory frame
of reference as

κ′0,res =
ω(1 − v cos θ)

1 − v cos θ̃′ + (ω/ε)(1 − cosϑ′)
. (31)

On account of positiveness of frequency (31) it must hold
inequality:

u1 =
2(kp)
m2

=
2ωε(1 − v cosϑ)

m2
≤ 1 ⇒ (32)

ω ≤ m2

2ε(1 − v cos θ)
, (33)

where u1 is an invariant parameter which determines the
relativity of the process of scattering an electron by the
wave [25] (the condition u1 � 1 corresponds to non rela-
tivism and u1 ≥ 1 corresponds to relativism).

Equating expressions (17) and (31) we derive an ex-
pression that allows us to determine an interval of the

frequency of the incident photon and the direction of prop-
agation of a final photon for given initial electron energies
and fixed parameters of the wave. We can conclude that
the resonance through electronic intermediate state oc-
curs in the exchange amplitude when the frequency of the
initial photons lays in the interval:

ωf

1 +
√
u1τ

≤ κ0 ≤ ωf

1 −√
u1τ

, (34)

where

f = f(θ, θ̃) =
(1 − v cos θ)
(1 − v cos θ̃)

(35)

and τ is a kinematic invariant parameter:

τ =
(kκ)
(pκ)

=
ω(1 − cosϑ)
ε(1 − v cos θ̃)

, (36)

which lays in the interval: 0 ≤ τ ≤ u1.
For small frequency of the wave (ω � m) the interval

of the resonant frequencies of the incident photon also
is small: ∆κ0,res ≈ 4f3/2ω(ω/m) sinϑ/2. Nevertheless we
assume that this interval is greater than a spectral width
of the laser: ∆κ0,res 
 Γω for ϑ ∼ 1.

The dependence of the resonant polar angle ϑ′ of the
final photon on the azimuthal angles ϕ′ is given by

ϑ′res = 2 arctan

(
cos θh cos(ψh − ψ′) ±√

D

cosα+ cos θh

)

. (37)

Here

D = sin2 θh cos2(ψh − ψ′) + cos2 θh − cos2 α, (38)

cosα =
h0

|h| , cos θh =
(hn)
|h| , tanψh =

(hey)
(hex)

, (39)

h = (h0,h) =
(

(kp)
(κp)

− 1
)
p+

(
(kp)
(κp)

κ− k

)
, (40)

h0 =
(

fω

κ0,res
− 1
)
ε+ ω(f − 1), (41)

h =
(

fω

κ0,res
− 1
)

p + ω(fnκ − n), (42)

where θh, ψh are the polar and azimuthal angles of the
vector h (42).

From all values of ϑ′res in the equation (37) we must
take only the positive one (see Fig. 5). The formula (37)
has simple geometric interpretation: a unit vector n′

κ is
one of the rulings of the cone, which is made by the vector
h (42) with the cone angle α (39) (see Fig. 6).

3.2 Positronic intermediate state

In the case of the resonance through positronic interme-
diate state we can rewrite a process as a consequence of
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Fig. 5. Dependence of the polar angles θ′ on the azimuthal
angles of the final photon ψ′ (Ex. (37)) for θh = 45◦ and
ψh = 180◦. Solid line corresponds α = 46◦, and dashed line
corresponds α = 43◦.

Fig. 6. Geometric interpretation of the formula (37).

Fig. 7. Resonance in the exchange diagram through electronic
intermediate state.

two subprocesses (see Fig. 7): production of an electron-
positron pair by the indent photon in the field of the wave
with consequent annihilation of electron-positron pair in
the field of the wave. The conservation laws of four-mo-
mentum which correspond to these subprocesses have the
following forms:

κ+ k = f+ + p′, (43)

f+ + p = k + κ′. (44)

Now, let us analyze the conditions when resonances appear
through positronic intermediate state. Taking into account
equation (15), the resonant conditions f2

+ = m2 can be

rewritten in the laboratory frame of reference as

κ′0,res =
ω(1 − v cos θ)

(ω/ε)(1 − cosϑ′) − (1 − v cos θ̃′)
. (45)

On account of positiveness of the frequency (45) it must
hold inequality:

u1 ≥ 1 ⇒ ω ≥ m2

2ε(1 − v cos θ)
. (46)

Equating expressions (17) and (45) we may conclude that
in the exchange amplitude the resonance through positro-
nic intermediate state has a place when a frequency of the
incident photon exceeds a certain threshold:

κ0 ≥ κ0,lim, κ0,lim =
ωf√
u1τ − 1

(47)

where the kinematic invariant parameter τ (36) lays in the
interval: u−1

1 ≤ τ ≤ u1.
The dependence of the resonant polar angle ϑ′ of the

final photon on the azimuthal angles ϕ′ is given by formu-
las (37–39) with the replacements

h0 → h̃0 =
(

fω

κ0,res
+ 1
)
ε+ ω(f − 1), (48)

h → h̃ =
(

fω

κ0,res
+ 1
)

p + ω(fnκ − n). (49)

3.3 Interference of the resonant amplitudes

We can consider resonances of the direct and exchange
(with electronic intermediate state) amplitudes separately
with the exception of a case when a frequency of the in-
cident photon lays not only in the interval (34) but it
satisfies the expression:

κ0,res =
ω(1 − v cos θ)

1 − v cos θ̃ − (ω/ε)(1 − cosϑ)
. (50)

This is a condition of the resonance of the direct ampli-
tude [12]. Substituting the equation (50) in the expres-
sions (41)–(42) we can find the resonant polar angles ϑ′
(37) of the final photon which correspond to the interfer-
ence of the direct and exchange amplitudes.

Interference of the resonant direct and exchange (with
positronic intermediate state) amplitudes has no place be-
cause the maximal value of the frequency (50):

κ0,res =
ω(1 − v cos θ)

1 − ω/ε− |v − (ω/ε)n| (51)

is less than a threshold value of a frequency of the inci-
dent photon (47) which is necessary for a passing of the
resonance through positronic intermediate state.
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4 Resonant cross-sections

The resonant cross-section for the direct amplitude av-
eraged over polarizations of the initial photon and elec-
tron and summed over polarizations of the final photon
and electron has been obtained in the work [12]. Similarly
we obtain the resonant cross-section for the exchange di-
agram.

For a resonance of the exchange amplitude we have fol-
lowing expressions for a different resonant cross-sections
averaged over polarizations of the initial photon and elec-
tron and summed over polarizations of the final photon
and electron:

dσ(∓)
res

dΩ′ =
r2eη

4

2

(
κ′0
Γ

)2
ũ−2

1 H(∓)(ũ′, u1, ũ, ũ1)
1 +R(u′res − u′)2

, (52)

where re = e2/m is the classical radius of an electron; mi-
nus and plus correspond to the electronic and positronic
states accordingly; u′ is an invariant parameter and u′res
is a value of a parameter u′ which corresponds to the res-
onance:

u′ =
(κκ′)
(pκ′)

, u′res = (ũ′ ± 1)
ũ1

u1
− 1, (53)

a function R is given by:

R =
m

Γ

u2
1

(1 + u′)2
. (54)

In formula (52) the functions H(∓) is written as

H(∓) = f(υ(∓)
2 , u

(∓)
1 )f(υ(∓)

1 , u
(∓)
1 )

+
2υ(∓)

1 υ
(∓)
2

(υ(∓)
1 ± 1)(υ(∓)

2 ± 1)

⎛

⎜
⎝
υ

(∓)
1 + υ

(∓)
2

u
(∓)
1

− 2υ(∓)
1 υ

(∓)
2(

u
(∓)
1

)2

⎞

⎟
⎠

+ g(υ(∓)
2 , u

(∓)
1 )g(υ(∓)

1 , u
(∓)
1 ) − 2υ(∓)

1 υ
(∓)
2(

u
(∓)
1

)2

(
ũ1 − u

(∓)
1

)
.

(55)

Here

f
(
υ

(∓)
1 , u

(∓)
1

)
= 2 +

(
υ

(∓)
1

)2

υ
(∓)
1 ± 1

− 4
υ

(∓)
1

u
(∓)
1

(

1 − υ
(∓)
1

u
(∓)
1

)

,

(56)

g
(
υ

(∓)
1 , u

(∓)
1

)
=

(2 ± υ
(∓)
1 )(u(∓)

1 − 2υ(∓)
1 )υ(∓)

1

2u(∓)
1 (υ(∓)

1 ± 1)
, (57)

υ
(∓)
1 =

(kκ′)
(kp)

=
ũ′

ũ′ ± 1
, (58)

υ
(∓)
2 =

(kκ)
(kp′)

=
ũ

1 + ũ− υ
(∓)
1

, (59)

ũ =
(kκ)
(kp)

, ũ1 =
2(κp)
m2

. (60)

It is convenient to compare the resonant differential
cross-section (52)–(55) with a differential cross-section of
Compton-effect in the absence of the external field [26]:

dσc

dΩ′ = 2r2e

(
κ′0
m

)2
C (u′, ũ1)

ũ2
1

. (61)

Here

C (u′, ũ1) = 2 +
u′2

1 + u′
− 4

u′

ũ1

(
1 − u′

ũ1

)
. (62)

The ratio of the resonant differential cross-section (52) to
the conventional different cross-section in the absence of
the external field (61) for

|u′ − u′res| � u′res + 1
u1

(
Γ

m

)2

(63)

has a shark peak which may be written as

dσ(∓)
res

dσc
=

4
α2

H(∓)(ũ′, u1, ũ, ũ1)
F 2(u(∓))C (u′, ũ1)

, (64)

where α = e2 = 1/137 is the fine-structure constant.
For electronic intermediate state the invariant param-

eters ũ1, τ , ũ′ lay in the intervals:

u1

1 +
√
u1τ

≤ ũ1 ≤ u1

1 −√
u1τ

, (65)

0 ≤ τ ≤ u1, 0 ≤ ũ′ ≤ u1. (66)

For positronic intermediate state the parameter ũ1 must
exceed the threshold:

ũ1 ≥ ũ1,lim, ũ1,lim =
u1√

u1τ − 1
(67)

and parameters τ , ũ′ lay in the intervals:

u−1
1 ≤ τ ≤ u1, 1 + u−1

1 ≤ ũ′ ≤ u1. (68)

In general relativistic case, the resonant cross-section of
Compton effect in the field of the low intense circularly
polarized electromagnetic wave can’t be factorized into
production of probabilities (or cross-sections) of two sub-
processes of the first order in the fine-structure constant.
However it is possible in the non relativistic case

u1 � 1 (69)

(all other invariant parameters in the expression (55) are
less or equal to u1) for the resonance through electronic
intermediate state. Under condition (69) we can write

Γ

m
=
e2η2

3
u1(1 − u1), (70)

H(−) = f(ũ′, u1)f(ũ, u1), (71)

here

f(ũ′, u1) = 2 − 4
ũ′

u1

(
1 − ũ′

u1

)
. (72)
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Fig. 8. The dependence of the ratio of the resonant differential
cross-section (52) to the conventional different cross-section in
the absence of the external field (61) on the invariant parameter
ũ′ for u1 = 0.05, τ = 0.5u1, ũ1 = 0.5, ũ = 0.015.

Fig. 9. The dependence of the factor of factorization r (75) on
the invariant parameter ũ′ for u1 = 0.05, τ = 0.5u1, ũ1 = 0.5,
ũ = 0.015.

In this case we can write the resonant cross-section in a
factorized form:

dσ(−)
res ∼ dwewa

1 +R(u′res − u′)2
, (73)

where dwe ∼ f(ũ′, u1)dΩ′ is the differential probability
per unit time to emit the final photon with absorption of
one photon of the electromagnetic wave, wa ∼ f(ũ, u1) is
the probability per unit time to absorb the initial photon
with radiation one photon of the electromagnetic wave.

Estimation shows that the resonant cross-section may
be several orders of magnitude greater than the cross-
section of the corresponding process in the absence of the
external field

dσ(∓)
res

dσc
� 4
α2


 1. (74)

Figures 8–11 demonstrate dependence of the ratio of the
resonant differential cross-section (52) to the conventional

Fig. 10. The dependence of the ratio of the resonant differen-
tial cross-section (52) to the conventional different cross-section
in the absence of the external field (61) on the invariant pa-
rameter ũ′ for u1 = 5, τ = 0.05u1, ũ1 = 10, ũ = 5.99.

Fig. 11. The dependence of the factor of factorization r (75)
on the invariant parameter ũ′ for u1 = 5, τ = 0.5u1, ũ1 = 10,
ũ = 5.99.

different cross-section in the absence of the external field
(61) on the invariant parameter ũ′ and the dependence of
the factor of factorization r (75):

r =
f(υ(∓)

2 , u
(∓)
1 )f(υ(∓)

1 , u
(∓)
1 )

H(ũ′, u1, ũ, ũ1)
(75)

on the invariant parameter ũ′.

5 Conclusion

Analysis of Compton effect through the exchange diagram
in the field circularly polarized electromagnetic wave has
demonstrated that this process may occur in the resonant
region.
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The resonance in the exchange amplitude through elec-
tronic intermediate state has a place when it holds inequal-
ity (32) and the frequency of the incident photon lays in
the interval (34).

The resonance in the exchange amplitude through po-
sitronic intermediate state has a place when it holds in-
equality (46) and the frequency of the incident photon
exceeds a certain threshold (47).

Estimation shows that the resonant cross-section may
be several orders of magnitude greater than the cross-
section of the corresponding process in the absence of the
external field:

dσ(∓)
res

dσc

 1.

We are grateful to Dr. R.I. Kholodov for discussions and valu-
able remarks.
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4. P. Panek, J.Z. Kamiński, F. Ehlotzky, Eur. Phys. J. D 26,

3 (2003)
5. K. Krajewska, J.Z. Kamiński, F. Ehlotzky, Laser Phys. 16,

272 (2006)
6. O.I. Denisenko, S.P. Roshchupkin, A.I. Voroshilo, J. Phys.

B: At. Mol. Opt. Phys. 39, 965 (2006)

7. V.P. Oleinik, I.V. Belousov, Problem of Quantum
Electrodynamics of a Vacuum, Dispersive Media and
Strong Field (Chisinau, “Shtiincsa”, 1983), p. 255

8. S.P. Roshupkin, Laser Phys. 6, 837 (1996)
9. V.P. Oleinik, Zh. Eksp. Teor. Fiz. 52, 1049 (1967)

10. V.P. Oleinik, Zh. Eksp. Teor. Fiz. 53, 1997 (1967)
11. I.V. Belousov, Opt. Commun. 20, 205 (1997)
12. A.I. Voroshilo, S.P. Roshchupkin, Laser Phys. Lett. 2, 184

(2005)
13. A.V. Borisov, V.Ch. Zhukovskii, R.A. Eminov, Zh. Eksp.

Teor. Fiz. 78, 530 (1980)
14. J. Bös, W. Brock, H. Mitter, Th. Scott, J. Phys. A 12,

2573 (1979)
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